STATS 2MB3, Tutorial 3

Jan 30 th, 2015

Central Limit Theorem

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}.
Then if n is sufficiently large, \bar{X} has approximately a normal distribution with mean μ and variance σ^{2} / n, and $T_{0}=X_{1}+\cdots+X_{n}$ also has approximately a normal distribution with mean $n \mu$ and variance $n \sigma^{2}$. The larger the value of n, the better the approximation.

Ex 63, page 46

- A sample of 77 individuals working at a particular office was selected and the noise level (dBA) experienced by each individual was determined, yielding the following data:
- 55.3,55.3,55.3,55.9,55.9,55.9,55.9,56.1,56.1,56.1,56.1,56.1, 56.1,56.8,56.8,57.0,57.0,57.0,57.8,57.8,57.8,57.9,57.9,57.9, 58.8,58.8,58.8,59.8,59.8,59.8,62.2,62.2,63.8,63.8,63.8,63.9, 63.9,63.9,64.7,64.7,64.7,65.1,65.1,65.1,65.3,65.3,65.3,65.3, 67.4,67.4,67.4,67.4,68.7,68.7,68.7,68.7,69.0,70.4,70.4,71.2, 71.2,71.2,73.0,73.0,73.1,73.1,74.6,74.6,74.6,74.6,79.3,79.3, 79.3,79.3,83.0,83.0,83.0
- Use various techniques discussed in this chapter to organize, summarize and describe the data.


```
The decimal point is 1 digit(s) to the right of the |
| | 555666666666677777888888999
| | 00022444444
| | 55555555557777799999
7 | 001113333
7 | 55559999
8 | 333
```


Ex 46, page 229

- The inside diameter of randomly selected piston ring is a random variable with mean value 12 cm and standard deviation 0.04 cm .
- a) If \bar{X} is the sample mean diameter for a random sample of $\mathrm{n}=16$ rings, where is the sampling distribution of \bar{X} centered, and what is the standard deviation of the \bar{X} distribution?
- b) Answer the questions posed in the part (a) for a sample size of $\mathrm{n}=64$ rings.
- c) For which of the two random samples, the one of the part (b), is \bar{X} more likely to be within 0.01 cm of 12 cm ? Explain your reasoning.
- a)Set $X=$ the inside diameter, then

$$
E(X)=12, \operatorname{sd}(X)=0.04
$$

\bar{X} is the sample mean of X, then

$$
E(\bar{X})=E\left(\frac{X_{1}+\cdots+X_{16}}{16}\right)=\frac{16 E(\mathrm{X})}{16}=E(\mathrm{X})=12
$$

- $\operatorname{sd}(\bar{X})=\sqrt{\operatorname{Var}(\bar{X})}=\sqrt{\operatorname{Var}\left(\frac{X_{1}+\cdots+X_{16}}{16}\right)}=\sqrt{\frac{1}{16^{2}} 16^{*} \operatorname{Var}(\mathrm{X})}$

$$
=\frac{1}{\sqrt{16}} * s d(\bar{X})=0.04 / 4=0.01
$$

- b) When $\mathrm{n}=64$, then

$$
\begin{aligned}
& E(\bar{X})=E\left(\frac{X_{1}+\cdots+X_{16}}{64}\right)=\frac{64 E(\mathrm{X})}{64}=E(\mathrm{X})=12 \\
& \left.\operatorname{sd}(\bar{X})=\sqrt{\operatorname{Var}(\bar{X})}=\sqrt{\operatorname{Var}\left(\frac{X_{1}+\cdots+X_{16}}{64}\right.}\right)=\sqrt{\frac{1}{64^{2}} 64 \cdot \operatorname{Var}(\mathrm{X})} \\
& =\frac{1}{\sqrt{64}} \cdot \operatorname{sd}(\bar{X})=0.04 / 8=0.005
\end{aligned}
$$

- c)
- \bar{X} in part (b) is more likely to be within 0.01 cm of 12 cm , because part (b) has a smaller standard deviation.

Ex 81, page 236

- If the sample size N is also a random number and it is independent of the observations X, it can be shown that
$E\left(X_{1}+\cdots+X_{N}\right)=\mathrm{E}(\mathrm{N}) \cdot \mu$
- a) If $N=$ the number of components that are brought into a repair shop on a particular day, and X_{i} denotes the repair time for ith component, we know the expected number of components is 10 and expected repair time for each component is 40 min , then what is the expected total repair time?
- $\mathrm{E}(\mathrm{N})=10$ and $\mu=40$, then the expected total repair time is 400.

